skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biswas, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce CREStE, a scalable learning-based mapless navigation framework to address the open-world generalization and robustness challenges of outdoor urban navigation. Key to achieving this is learning perceptual representations that generalize to open-set factors (e.g. novel semantic classes, terrains, dynamic entities) and inferring expert-aligned navigation costs from limited demonstrations. CREStE addresses both these issues, introducing 1) a visual foundation model (VFM) distillation objective for learning open-set structured bird's-eye-view perceptual representations, and 2) counterfactual inverse reinforcement learning (IRL), a novel active learning formulation that uses counterfactual trajectory demonstrations to reason about the most important cues when inferring navigation costs. We evaluate CREStE on the task of kilometer-scale mapless navigation in a variety of city, offroad, and residential environments and find that it outperforms all state-of-the-art approaches with 70% fewer human interventions, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  2. This paper addresses the problem of preference learning, which aims to align robot behaviors through learning user specific preferences (e.g. "good pull-over location") from visual demonstrations. Despite its similarity to learning factual concepts (e.g. "red door"), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is a neuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs, facilitating inspection of individual parts for alignment, in a domain-specific language (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out of distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies. 
    more » « less
  3. We describe the development of a one-credit course to promote AI literacy at The University of Texas at Austin. In response to a call for the rapid deployment of class to serve a broad audience in Fall of 2023, we designed a 14-week seminar-style course that incorporated an interdisciplinary group of speakers who lectured on topics ranging from the fundamentals of AI to societal concerns including disinformation and employment. University students, faculty, and staff, and even community members outside of the University, were invited to enroll in this online offering: The Essentials of AI for Life and Society. We collected feedback from course participants through weekly reflections and a final survey. Satisfyingly, we found that attendees reported gains in their AI literacy. We sought critical feedback through quantitative and qualitative analysis, which uncovered challenges in designing a course for this general audience. We utilized the course feedback to design a three-credit version of the course that is being offered in Fall of 2024. The lessons we learned and our plans for this new iteration may serve as a guide to instructors designing AI courses for a broad audience. 
    more » « less